miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle.

نویسندگان

  • Matthew B Hudson
  • Jill A Rahnert
  • Bin Zheng
  • Myra E Woodworth-Hobbs
  • Harold A Franch
  • S Russ Price
چکیده

Skeletal muscle atrophy occurs in response to a variety of conditions including chronic kidney disease, diabetes, cancer, and elevated glucocorticoids. MicroRNAs (miR) may play a role in the wasting process. Activation of the forkhead box O3 (FoxO3) transcription factor causes skeletal muscle atrophy in patients, animals, and cultured cells by increasing the expression of components of the ubiquitin-proteasome and autophagy-lysosome proteolytic systems. To identify microRNAs that potentially modulate the atrophy process, an in silico target analysis was performed and miR-182 was predicted to target FoxO3 mRNA. Using a combination of immunoblot analysis, quantitative real-time RT-PCR, and FoxO3 3'-UTR luciferase reporter genes, miR-182 was confirmed to regulate FoxO3 expression in C2C12 myotubes. Transfection of miR-182 into muscle cells decreased FoxO3 mRNA 30% and FoxO3 protein 67% (P < 0.05) and also prevented a glucocorticoid-induced upregulation of multiple FoxO3 gene targets including MAFbx/atrogin-1, autophagy-related protein 12 (ATG12), cathepsin L, and microtubule-associated protein light chain 3 (LC3). Treatment of C2C12 myotubes with dexamethasone (Dex) (1 μM, 6 h) to induce muscle atrophy decreased miR-182 expression by 63% (P < 0.05). Similarly, miR-182 was decreased 44% (P < 0.05) in the gastrocnemius muscle of rats injected with streptozotocin to induce diabetes compared with controls. Finally, miR-182 was present in exosomes isolated from the media of C2C12 myotubes and Dex increased its abundance. These data identify miR-182 as an important regulator of FoxO3 expression that participates in the control of atrophy-inducing genes during catabolic diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Out FoxO'd by microRNA. Focus on "miR-182 attenuates atrophy-related gene expression by targeting FoxO3 in skeletal muscle".

OVER THE PAST FEW YEARS, non-coding RNAs (ncRNAs) have emerged as important regulators of gene expression (2). A family of small ncRNAs, known as microRNAs (miRNAs), have been shown to have a role in a wide range of developmental and cellular processes as well as certain pathologies such as cancer. This family of ncRNAs functions through a posttranscriptional mechanism by inhibiting mRNA transl...

متن کامل

Sp1-mediated microRNA-182 expression regulates lung cancer progression

Our recent study indicated that overexpression of Sp1 enhances the proliferation of lung cancer cells, while represses metastasis. In this study, we found that the transcriptional activity of FOXO3 was increased, but its protein levels decreased following Sp1 expression. Sp1 increased expression of miR-182, which was then recruited to the 3'-untranslated region of FOXO3 mRNA to silence its tran...

متن کامل

miR-29b contributes to multiple types of muscle atrophy

A number of microRNAs (miRNAs, miRs) have been shown to play a role in skeletal muscle atrophy, but their role is not completely understood. Here we show that miR-29b promotes skeletal muscle atrophy in response to different atrophic stimuli in cells and in mouse models. miR-29b promotes atrophy of myotubes differentiated from C2C12 or primary myoblasts, and conversely, its inhibition attenuate...

متن کامل

The Effect of Aerobic Training and Tribulus Terrestris Extract on Muscle Atrophy Indices and Oxidant-Pro-Oxidant Balance in Extensor Digitorum Longus Muscles of Type 2 Diabetic Desert Rats

Background & Aims: Performing normal daily activities requires sufficient muscle size and strength, and atrophy has a negative effect on the overall quality of life; So that the decrease in skeletal muscle mass leads to a decrease in human performance, long-term health and low quality of life. Diabetes is associated with the development of secondary complications in various organs, especially s...

متن کامل

Comparison of the Alterations of Gene Expression Related to Signaling Pathways of Synthesis and Degradation of Skeletal Muscle Protein Induced by Two Exercise Training Protocols

Background and Objectives: Skeletal muscle mass depends on the balance between synthesis and degradation of muscle protein, which changes with aging and disease. The aim of the present reserch was to examine the effects of two exercise training protocols on alterations of some genes involved in pathways of protein synthesis and degradation in order to achieve a more effective training program i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 307 4  شماره 

صفحات  -

تاریخ انتشار 2014